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Summary. Ex pe rim e nt a l he rpesv iru s re tin opa th y 
prese nt s a uniqu e model o f a transient infl amm atory 
response in the virus-injected eye and subsequent acute 
re tin al nec ros is a nd c hr o ni c infl amm ati o n in th e 
co nt ra late ral eye . For 6 days after in fec ti on, VEG F. 
TGH \ , a nd T G F13 2 we re assoc ia ted o nl y w ith 
infl amm atory ce lls in the injected eye. By 6 days (after 
viral anti ge ns we re no longe r de tec ted), VEG F and 
TGF132 were upregulated in retinas of injected eyes until 
8- 10 days. In co ntr a la te ra l eyes, VEG F was f irs t 
de monstrated in th e re tin a at 6-7 days (pri or to th e 
appea rance of vira l antige ns) and TGF13 2 at 7-8 days . 
Staining fo r these factors was also evident around areas 
of necros is. The VEGF receptor, fit-I , was associated 
with ganglion ce lls and the inner nuclear layer of normal 
and ex perimental mi ce and it was also demonstrated 
around areas of necrosis. Another VEG F receptor, flk-] , 
was loca li zed to MUlle r ce ll processes and th e oute r 
plex ifo rm layer in no rm al and ex perim e nta l mi ce . 
Co in cident with VEGF upregul ation in the retinas of 
herpesvirus- l injected mice, there was increased fl k-1 in 
ganglion ce lls and the inner and outer nuclear layers. IL-
6 was assoc iated with Mull er ce ll endfeet in normal 
mice. Follow ing unilateral intraocular inocul ation, IL-6 
sp read a lo ng th e Miill e r ce ll p rocesses and so me 
as trocy tes demonstra ted IL-6 in both eyes at 6-8 days . 
T he prese nt s tu dy de mo ns tr ates that intr aoc ul a r 
inocul ation of herpesv irus is suffi cient to induce VEGF, 
flk-l , TGFI32, and IL-6 in the retin as of inj ected and 
contra lateral eyes . Furth er inves tigat ion o f co mmon 
signaling pa thways fo r these fac tors during responses to 
viral in fect ion and th e deve lopme nt o f ac ute ret inal 
necrosis could prov ide in formation use ful fo r therapeutic 
intervention in human herpesv iru retinopathy. 
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Introduction 

Vasc ul ar end o th e li a l g row th fac to r (VEGF) is 
induced by hypox ia (Plate et aI. , 1992; Shweiki et aI. , 
1992; Goldberg and Schneide r, 1994; Hashimoto et aI. , 
1994; Minchenko, et aI. , 1994a, b; Levy et aI. , 1995; 
Pierce et aI. , 1995) and its induction is associated with 
angiogenes is in hypox ic ti sues (M ill er et a I. , 1994; 
Stone et aI. , 1995; Murata et aI. , 1996). In ome cases, 
howeve r, VEGF inducti on occurs in ti ssues in which 
hypox ia does not appear to be a feature and angiogenesis 
does not occur. Infl amm atory ocul ar disorders that do 
not prese nt with ap parent path o log ica l ev idence of 
hypox ia in c lu de aut o immun e d iso rde rs, suc h as 
ex pe rim ent al a ut o immun e uveo re tiniti s (EAU) , 
infec tions, and aphakic or pseudophakic macular edema 
(Vinores et aI. , 1997) . These findings suggest that fac tors 
other than hypoxia may be capable of inducing VEGF in 
th e re tin a in pa th o log ica l co nd iti o ns, as has bee n 
de mo nstr ated in oth er systems. A num be r of oth er 
fac tors, such as interleukin-1 13 (Ben-Av et aI. , J 995; Li et 
aI. , 1995; Jackson et aI. , 1997; Ristim aki et aI. , 1998) 
prostaglandins E1 and E2 (Harada et aI. , 1994), tumor 
necrosis factor-a (Ryuto et aI. , 1996), epidermal growth 
[ac to r, pl a te le t-de ri ve d g row th fac to r-BB , basic 
f ibro bl as t g rowt h fac to r (Tsa i e t a l ., 1995), a nd 
infla mm ato ry cy to kin es fro m ac ti va ted T-ce ll s 
(Samaniego et aI. , 1998) have been shown to stimulate 
the prod uction and secretion of VEGF in other systems 
and th is is also likely to occur in the eye. In disorders 
that do not involve hypoxia, VEGF may be produced by 
res id e nt ce ll s and th e re by co ntribut e to a p ro
inflammatory cascade via recru itment and activation of 
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inflammatory cells and their adhesion to the vascular 
endothelium (Barleon et al., 1996; Clauss et al., 1996; 
Melder et al., 1996; Lu et al., 1999). 

It is likely that VEGF may contribute to an 
inflammatory reaction without induction of 
neovascularization (NV) due to the presence of one or 
more angiogenesis inhibitor s . TGF131 and TGF132 
s uppress prolife ration of vascular endothelial cells 
(Jennings et al., 1988; McAvoy and Chamberlain, 1990; 
Chakravarthy and Archer, 1992; Pertovaara et al., 1994; 
Behzadian et al., 1995; Kulkarni et al., 1995; Yoshimura 
et aI., 1995) and may inhibit NV in expe rim e ntal 
herpesvirus retinopathy. We have provided evidence that 
TGF13 performs this function in the EAU model (Vinores 
et al., 1998) and this may occur in other ocular disorders 
in which TGF13 is upregulat e d . TGFI3 has be e n 
demonstrated in vitro to suppress vascular endothelial 
cell growth by a down-regulation of the VEGF receptor, 
flk-l (Mandriota et al., 1996). 

Interleukin-6 (IL-6) is a pro-inflammatory cytokine 
that is associated with ocular inflammatory conditions 
including human and experimental uveitis (Murray and 
Martens, 1990; DeBoer et a1., 1992; De Vos et al., 1992; 
Franks et al., 1992; Hoekzema et al. , 1992; Planck et al., 
1992; Yoshida et al., 1994; Kuppner et al., 1995) and it 
may act in conjunction with VEGF to prom o te an 
inflammator y re s ponse . IL-6 can be produced 
constitutively or in response to a variety of stimuli, such 
as interl eukin-ll3, tumor necrosis factor-a, or TGFI3 (Van 
Snick, 1990; Benson et al., 1992; Planck et al., 1992; 
Kishimoto, et al., 1994; DeVos et al., 1995 ; Kuppner e t 
aI. , 1995). IL-6 overexpression is associated with 
breakdown of the blood-brain barrier (BBB) a nd 
recruitment of inflammatory cells (Brett et al., 1995; 
Watson et al., 1996), which are potential mechanisms for 
fostering an inflammatory response. Since VEGF 
promot es blood-retinal barrier (BRB) breakdown 
(Connolly et al., 1989; Luna et al., 1997; Ozaki et al., 
1997) and also participates in th e recruitment of 
inflammatory cells (Barleon et al., 1996; Clauss et al., 
1996; Melder et al., 1996; Lu et al., 1999), VEGF and 
IL-6 may act synergistically. 

Experimental herpesv iru s retinopathy presents a 
unique model in which there is a trans ie nt inflammatory 
response in the anterior segment of one eye and a viral 
infection leading to acute retinal necrosis and chronic 
inflammation in the opposite eye (WhiUum et al., 1983, 
1984). This model facilitates the investigation of both 
processes in th e same animal. Inoculation of herpes 
simplex virus type 1 (HSV-1) into the anterior chamber 
of one eye of a BALB/c mouse res ults in a rapid , 
trans ient inflammatory reaction, which subsides with the 
loss of viral protein at about day 5, post-inoculation. 
There is no residual damage in the retina of the injected 
eye. The contralateral eye deve lops a delayed retinal 
necros is beginning at 7 days post-inocul a tion with 
inflammatory cell infiltration, coincident with the 
appearance of virus, and leading to complete re tinal 
necrosi s by day 14. The present report describes our 
studies of expression of VEGF and its receptors and of 

TGF13 and IL-6 during the course of these processes. 

Materials and methods 

A total of 31 adult BALB/c mice received 2x104 

plaque-forming units (pfu) of the KOS strain of HSV-l 
in a volume of 4Jll, into the anterior chamber, as 
previously described (Dix et al., 1987; Whittum et al., 
1984). Twenty-one of the mice were injected unilaterally 
and the remainder were injected bilaterally. Of the mice 
receiving a unil ateral inoculation , 2 each were sacrificed 
at 1,2, 6, 7, 8, 12, and 13 days and 4 were sacrificed at 3 
and 11 days. Of the bilaterally-injected mice , 3 were 
sacrificed at 1 and 2 days, and 2 were sacrificed at 6 and 
12 days. The retinas of injected eyes from unilateraiJy
or bilat e ra lly-injected mice were found to be 
phenotypically identical (Whittum et al., 1984), and thus 
were grouped togeth e r. As controls for non specific 
inflammation induced by injection alone, 10 mice 
received intraocular injections of the same volume of 
Hank's Balanced Salt Solution (HBSS). Half of the mice 
were inoculated unilatera lly and the other half were 
inoculated bilaterally. HBSS-injected control mice were 
sac rificed at 3 days (3 unilaterally and 2 bilatera lly 
injected) and at 7 days post-inoculation (2 unilaterally
and 3 bilaterally-injected). Eyes from normal, untreated 
mice were similarly processed. When the mice were 
sacrificed, the eyes were enucleated, immediately snap
embedded in OCT compound (Miles, Elkhart, IN), and 
stored at -80°C. One eye from each of the following was 
cryopreserved: 3 mice that were sacrificed 2 days after 
receiving bilateral injections, one of the mice receiving a 
unilateral inj ection (contralateral eye was frozen), and 
the 5 normal mice. Both eyes from all other mice were 
frozen. Cryosections were cut for immunohistochemistry 
and post-fixed in -20 °C methanol. Immunohi s to
chemical staining for VEGF, the VEGF receptors, fit-I 
and flk-l, TGFI31, and TGFI3? was then performed, as 
previously described (Chen et al., 1997). To verify the 
specificity of the antibodies, VEGF and VEGF receptor 
antibodies were pre- incubated for 2 hours at room 
temperature with a tenfold excess of the appropriate 
control peptide (Santa Cruz Biotechnology, Santa Cruz, 
CA) prior to applying it to the tissue sections as 
previously described (Vinores et al., 1997). IL-6 sta ining 
was performed using a 1:25 dilution of a monoclonal rat 
anti-mouse IL-6 antibody (PharMingen, San Diego, CA) 
with the HistoMark Streptavidin-AP System goat-anti
rat IgG (H+L) kit (Kirkegaard & Perry, Gaithersburg, 
MD). Immunoreactivity for IL-6 was visualized with 
HistoMark Red (Kirkegaard & Perry). The other 
antigens were visualized with 3-amino-9-ethylcarbazole 
(Sigma, SI. Louis, MO). 

Results 

VEGF 

VEGF was not demonstrated in any of the normal 
mice or in injected or uninjected eyes of mice within 2 
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days after receiving HSV-l inoculations. At 3 days post
inoculation, VEGF positivity was associated with sparse 
inflammatory cells in the vitreous of 2 of 3 HSV-l 
inoculated eyes, but the retinas of injected and 
uninjected eyes were negative. VEGF was first evident 
in the retinas of injected eyes at 6 days post-inoculation 
(Table 1), where 5 of 6 eyes demonstrated patchy 
staining, primarily in the inner retina (Fig. lA). At 7-8 
days post-inoculation, patchy VEGF staining persisted in 
the injected eyes of 6 of 9 mice with positivity in the 
subretinal space in 2 mice that corresponds to areas of 
inflammatory cell infiltration (Figs. IB-D). Most of the 
VEGF protein was eliminated by 8-10 days, when viral 
antigens were no longer present in the anterior segments 
of injected eyes (Whittum-Hudson and Pepose, 1987). 
By 10-13 days post-inoculation, 50% of the mice still 
demonstrated VEGF positivity, which was largely 
confined to sparse inflammatory cells present on the 
inner surface of the ipsilateral retina (Fig. IE) and in 
perivascular areas surrounding inner retinal vessels (Fig. 
IF). At 3 days post-inoculation, in the retinas of mice 
injected intraocularly with HBSS, 1 of 7 injected eyes 
showed some VEGF staining in the intercellular spaces 
from the outer nuclear layer to the inner nuclear layer. 
By 7 days post-inoculation, similar extracellular staining 
was observed in 5 of 8 injected eyes, with one eye also 
showing staining in the retinal pigment epithelium 
(RPE) and around the inner segments of the 
photoreceptors. None of the other retinas from HBSS
injected mice showed cytoplasmic staining for VEGF. 

Weak, focal VEGF staining was first demonstrated 
in the anterior retina of the contralateral eye of 1 of 4 
unilaterally-infected mice at 6 days post-inoculation 
(Table 1). By 7 days post-inoculation, all contralateral 
uninfected eyes demonstrated intraretinal VEGF 
staining. The staining appeared patchy and was primarily 
localized to the inner nuclear and ganglion cell layers 

Table 1. VEGF local ization in retinas of mice receiving intracameral 
injections of HSV-1 

DAYS INJECTED EYE CONTRALATERAL EYE 
Post-inoculation (Positively stained/total) (Positively stained/total) 

o 0/5 0/5 
1-3 0/14 0/7 
6 ~6 1~ 

7-8 6/9 6/7 
10-13 6/12 7/8 

(Fig. IG). By 8 days post-inoculation, the VEGF 
staining intensified and as cell destruction occurred in 
the retinas of uninjected eyes, prominent VEGF staining 
could be seen in areas of necrosis (Fig. IH). At 8 days 
post-inoculation, contralateral retinas from 3 of 4 mice 
unilaterally-injected with HSV-l expressed VEGF 
immunoreactivity. The VEGF-negative retina, unlike the 
others, showed normal morphology and could represent 
a case of model failure . As retinal cell destruction 
progressed, VEGF expression persisted in a patchy 
distribution in 7 of 8 retinas (Fig. 2A), primarily in the 
inner retina and in areas where cellular destruction has 
occurred . Pre-incubation of VEGF antibodies with 
control peptide eliminated all immunostaining (Fig. 2B). 

Flt-1 

Weak positivity for the VEGF receptor, fit-I, was 
seen in the retinas of normal, uninjected mice, HSV-l 
injected eyes, contralateral eyes of mice injected 
unilaterally with HSV-l examined prior to the onset of 
inflammation , and all HBSS-injected eyes (Fig. 2C). Flt-
1 staining was localized to the ganglion cells and the 
inner nuclear layer in all treatment groups and controls. 
In the uninjected eyes of mice receiving unilateral HSV-
1 inoculations, more intense staining was seen in parallel 
with the onset of inflammatory cell infiltration and 
retinal destruction (Fig. 2E). Clusters of inflammatory 
cells in the subretinal space, resembling those that 
stained positively for VEGF (see Fig. IB), were positive 
for flt-l (Fig. 2F) . Pre-incubation of flt-1 antibodies with 
control peptide eliminated all immunostaining on 
comparable sections from the same animal, 
demonstrating the specificity of flt-l immunostaining 
(Fig.2D). 

Flk-1 

Most mice, regardless of treatment, showed weak, 
patchy f1k-l staining associated with Muller cell 
processes and the outer plexiform layer or an absence of 
flk-l staining in the retina (Table 2). Retinal positivity 
for flk - l, that was above baseline levels , was first 
observed in HSV-l injected eyes 6 days post
inoculation, the same time that VEGF upregulation was 
first observed . Flk-l continued to be upregulated in 
approximately 50% of the retinas of HSV-l injected eyes 
from days 7-13 (Fig. 3A,B), even though the tissues 

Fig. 1. Immunolocalization of VEGF in the ipsilateral (A-F) and contralateral (G, H) retinas of mice receiving intraocular injections of HSV-1 into one 
anterior chamber. A. Focal positivity for VEGF is first demonstrated (red reaction product) in the retina of a HSV-1 injected eye at 6 days post
inoculation. B. Hematoxylin and eosin stained section of the retina from a HSV-1 injected eye, 8 days post-inoculation, showing subretinal inflammatory 
cell infiltration (bottom). C. A comparable area from the same retina shown in 1 B (HSV-1 injected eye, 8 days post-inoculation) showing VEGF staining 
in the area of inflammatory cell infiltration in the outer retina. D. A comparable area to that shown in Band C, in which the VEGF antibodies were pre
incubated with control peptide, reveals no positive staining, demonstrating the specificity of the antibodies. E. VEGF staining is largely restricted to 
sparse inflammatory cells (arrowheads) on the inner surface of the retina in a HSV-1 injected eye, 12 days post-inoculation. F. Perivascular staining 
(arrows) for VEGF in the inner retina of a HSV-1 injected eye , 12 days post-inoculation . Inflammatory celis on the inner surface of the retina 
(arrowheads) are also positive. G. Weak, focal VEGF staining (arrowheads) in the retina of the uninjected eye of a mouse receiving a unilateral HSV-1 
injection 7 days prior. H. More prominent VEGF staining is associated with areas of retinal necrosis 8 days post-inoculation in the contralateral eye of a 
mouse receiving HSV-1 injection. x 650 
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Fig. 2. Differential localization of VEGF (A-C) and its receptor, flt-1 (D-G), in the retina. A. VEGF staining (red reaction product) associated with retinal 
necrosis 12 days after HSV-1 inoculation in the opposite eye. x 650. B. Pre-incubation of anti-VEGF antibodies with VEGF peptide eliminates staining 
in the retina taken from a mouse 12 days after receiving HSV-1 inoculation inthe opposite eye, demonstrating the specificity of the antibodies. This 
section is from the same animal as illustrated in Fig. 1 E, F. x 130. C. Weak flt-1 staining (red) associated with the ganglion cells (top) and inner nuclear 
layer (middle) in the retina of a HSV-1 injected eye, 1 day post-inoculation. x 260. D. Pre-incubation of flt-1 antibodies with control peptide shows an 
absence of immunostaining in a comparable area from the same retina shown in 1 B (compare to E and F) , demonstrating the specificity of the 
antibodies. x 650. E. Flt-1 staining (red) associated with the onset of inflammatory cell infiltration in the retina of a mouse, 7 days after rece iving HSV-1 
injection in the opposite eye. x 260. F. A subretinal cluster of inflammatory cells comparable to those illustrated in 1 B-D demonstrates flt-1 positivity 
(red), 11 days after receiving HSV-1 injection in the opposite eye. x 650 
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remained histologica lly normal. In addition to staining in 
the Muller cell processes and the outer plexiform layer, 
retinal flk-1 positivity in HSV-1 inj ected eyes from 7-13 
days post-inoculation was observed in ganglion cells and 
occasionally in the inner and outer nuclear layers . 

In contralate ra l re tin as, flk-1 s ta ining was f irs t 
observed at 7-8 days post-inoculation, consistent with 
the upregulation of VEG F. S ta ining was localized to 
additional areas other than Muller cell processes and the 
outer plexifo rm layer as increased staining of Muller cell 
processes was observed (Fig . 3C). In these animals, flt -1 
staining was also seen in ganglion cells and around areas 
of necros is. Only Muller ce ll processes and the outer 
pl ex ifo rm laye r expressed f1k -1 in ret inas of buffe r
injected or contralateral uninjected eyes of control mice 
at earlier times (3 or 7 days) post-inoculation. 

TGFB 1 

TGFI3[ was associated with inf lammatory cells in 
experimental herpesvirus retinopathy. TGF13 1 was no t 
demonstrated in normal retinas or in retinas 1 day post
inoculation, but it was f irst localized in the retinas of 
HSV-1 injected eyes at 2 days post-inoculation, where it 
was detected in inflammatory cells in the vitreous of 3 of 
5 eyes (Fig. 3E). Some inflammatory cells persisted in 
the vitreous through 13 days and these cells were fo und 
to be TGFI3 1-positive. TGF13 1 was first demonstrated in 
the contralateral retinas of HSV-1 inj ected eyes at 7 days 
post- in ocul ati on, co inc ident w ith in f lamm atory cell 
infiltrat ion. 

Weak, patchy or spotty staining for TGF132 was seen 
in th e re tin as of co ntro l mi ce a nd of mos t HS V-1 
injected and contralateral eyes at all time points, thus 
representing constitutive levels. The weak staining was 
primaril y localized to the inner plex ifo rm layer. By 2 

days after inoculation, some clu sters of infl ammatory 
ce lls in the vitreous were labelled fo r TGF132 and the 
staining associated with these cells intensified by day 3 
(Fig. 3F). Some weak staining of ganglion cell s was also 
observed. By day 6, retinal staining fo r TGF132 increased 
in intensity and spread to the outer retina (Fig. 3D,G). 
TG F132 staining in the retinas of HSV-1 injected mice 
dimini s hed to no rm a l leve ls b y 8- 10 d ays , as the 
infl amm ation subs ided . Residu a l inf lamm ato ry ce lls 
were decorated with TGF132 antibodies. 

In the eyes contralateral to those injected with HSV-
1, TGF132 staining above baseline was first evident at 7-8 
days, coinc ident w ith the infil tration of inflammatory 
cells and the onset of ret inal cell destruction. As acute 
retinal necrosis progressed, widespread TGF132 staining 
was demonstrated throughout the retina (Fig. 4A). The 
staining was particularl y intense at the edges of areas of 
necros is (Fig. 4C,D). 

(L-6 

No rm al BA LB/c mi ce showe d foca l sta ining of 
Muller cell processes fo r IL-6 along the inner surface of 
the retin a. Fo llowing intraocul ar inj ection of HSY-1, 
re tinas demonstrated intermittent staining of Muller cell 
processes, some extrace llular positiv ity between the ce lls 
in the inner nuclear layer, and staining at the interface 
between the inner nuclear layer and the outer p lex iform 
layer and aro und vesse ls (Fig. 4B,E) . Some as trocy te 
processes also stained for IL-6 at 8 days post- inoculation 
in th e HSV- 1 inj ec ted eye and a t 6 -8 d ays pos t
in ocul a ti on in th e co nt ra la te ra l eye . A dditi o na l 
intracellular IL-6 staining was seen surrounding areas of 
retinal cell destruction in the contralateral eyes. 

Discussion 

Following the inoculation of HSV-1 into the anterior 
c ha mb e r of B A LB/ c m o use eyes, a tr a ns ie nt 

Table 2. Flk-1 localization in retinas of mice receiving intraocular injections of HSV-1. 

DAY POST- INOCULUM INJECTED EYE OR N Flk-1 Flk-1 STAI NING LIMITED TO Flk-1 STAINING INVOLVING 
INOCULATION COTRALATERAL NEGATIVE MULLER CELL PROCESSES RETINAL CELLS OTHER THAN 

EYE AND THE OUTER MULLER CELLS (Ex: ganglion 
PLEXIFORM LAYER cells , inner nuclear layer, etc.) 

0 HSV-1 Injected 7 5 (71%) 2 (29%) 0(0%) 
0 HSV-1 Contralateral 3 0 (0%) 3 (100%) 0(0%) 

1-3 HSV-1 Injected 15 4 (27%) 11 (73%) 0(0%) 
1-3 HSV-1 Contralateral 5 1 (20%) 4 (80%) 0 (0%) 
6 HSV-1 Injected 6 0 (0%) 1 (1 7%) 5 (83%) 
6 HSV-1 Contralateral 4 3 (75%) 1 (25%) 0(0%) 

7-8 HSV-1 Injected 8 1 (12%) 3 (37%) 4 (50%) 
7-8 HSV-1 Contralateral 7 1 (14%) 1 (14%) 5 (71%) 

10-13 HSV-1 Injected 11 1 (9%) 5 (45%) 5 (45%) 
10-13 HSV-1 Contralateral 9 2 (18%) 2 (18%) 5 (56%) 

3 HBSS Injected 7 5 (71 %) 2 (29%) 0(0%) 
3 HBSS Contralateral 3 3 (1 00%) 0(0%) 0(0%) 
7 HBSS Injected 8 2 (25%) 6 (75%) 0(0%) 
7 HBSS Contralateral 2 0(0%) 2 (100%) 0(0%) 
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Fig. 3. Immunohistochemical staining for the VEGF receptor, flk-1 , (A-C), TGFB 1 (E), and TGFB2 (D,F,G) in the retinas of mice receiving HSV-1 
injections into one anterior chamber. x 260. A. Flk-1 staining (red) in Muller cell processes along the inner retinal surface in the retina of an HSV-1 
injected eye, 7 days post-inoculation. x 260. B. Higher magnification shows flk-1 staining of Muller cell processes in the retina of an HSV-1 injected eye, 
6 days post-inoculation. x 650. C. Flk-1 staining of Muller cell processes in the retina of a mouse, 12 days after receiving HSV-1 injection in the 
opposite eye. x 260. D. TGFB2 positivity in the outer retina (red) in an HSV-1 injected eye, 6 days post- inoculation. x 650. E. TGFB1 staining of 
inflammatory cells in the vitreous (arrowheads) in an HSV-1 injected eye, 3 days post-inoculation. x 260. F. TGFB2 staining of inflammatory cells in the 
vitreous (top) of an HSV-1 injected eye, 3 days post-inoculation. x 130. G. Higher magnification showing intraretinal staining for TGFB2 (arrowheads) in 
an HSV-1 injected eye, 6 days post-inoculation. x 650 
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in flammatory response was generated in the anterior 
segment (Whittum et aI. , 1983; Dix et a1., 1987). By 3 
days, some inflammatory cells had entered the v itreous. 
These inflammatory cells provided a source for VEGF in 
the vitreous of virus injected eyes, but VEGF was not 
detected within the retina until 6 days post-inoculation, 
at wh ich time viral antigens were no longer detectable 
(W hittum -H ud son and Pepose, 1987). Within the 
cont ralatera l retina , VEGF was first demonstrated a t 6 
days post-inoculation , w hi c h was 1 day prior to the 
initial detection of vira l antigens and inflammatory cell 
in f iltr ation. VEGF was detectable at 7 days post
inocu latio n in all contra latera l retinas, co inciden t with 
the arrival of v irus into the retina of uninjected eyes. The 

retina in on ly 1 of 4 eyes at 8 days post-inoculation was 
entire ly nega ti ve for VEGF and thi s re tina showed 
normal morphology, suggesting that model failure may 
have occurred in this animal. It is possible that even sub
threshold levels of virus present in the contra late ral , 
uninj ected eye triggers the production of VEGF. The 
experimental HSV retinitis model will a llow the study of 
the details of inflammatory responses both at the level of 
VEGF transcription a nd translation. This information 
may help in the development of new therapeutic targets 
that cou ld interr upt this process earlier in th e 
pathogenesis of ocular infection. 

VEGF (Plate et ai., 1992; Schweiki et a i. , 1992; 
Goldberg and Schneider, 1994; Hashimoto et a I. , 1994; 

Fig. 4. Immunohistochemical staining for TGFB2 (A, C, D) and IL-6 (S,E) in the retinas of mice receiving a unilateral injection of HSV-1 in the anterior 
chamber. A. Widespread TGFB2 staining (red) is demonstrated throughout the retina of a mouse 11 days after HSV-1 injection in the opposite eye. 
S. Seven days after intraocular injection of HSV-1, prominent staining for IL-6 is evident in Muller cell processes. C. Widespread retinal TGFB2 staining 
is visualized along the edges of necrotic areas in an eye contralateral to the eye receiving HSV-1, 12 days previously. D. Another area of widespread 
retinal TGFB2 showing particularly intense staining bordering areas of necrosis in mice that received HSV-1 inoculation in the oppOSite eye 12 days 
previously. E. Conspicuous IL-6 staining of Muller cell processes in the retina of an HSV-1 injected eye, 1 day post-inoculation. x 260 
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Minchenko, et a I. , 1994a,b; Levy et al., 1995; Pierce et 
aI. , 1995) and its receptors (Tuder et aI., 1995; Brogi et 
aI., 1996) are induced under hypoxic conditions, but in 
herpesvirus induced retinopathy there is no evidence of 
hypoxia. This presents the liklihood that VEGF is 
induced by other factors associated with ocular disease, 
as has been previously suggested (Vinores et aI., 1995). 
Herp esvi ru s infection ha s bee n s hown to alter 
intracerebral a nd intraocular cytokine production. 
Among th e major cytokine transcripts found in th e 
brains of mice infected with HSV-1 via intraocul a r 
injection are TNFa and IL-l13, which are abundantly 
expressed by 5 days post-infection (Lewandowski et aI., 
1994). In the anterior chamber infection model , 
transcript levels for TNFa, IL-6 (Drescher and Whittum
Hudson, 1996a), and Type I interferons (Drescher and 
Whittum-Hudson, 1997) are increased 4.5-fold in retinas 
within 2-3 days post-infection. Both TNFa (Ryuto et aI., 
1996) and IL-13 (Ben-Av et aI., 1995; Li e t aL, 1995; 
Jackson et a I. , 1997; Ristimaki et aI., 1998) have been 
s hown to be capable of inducing VEGF and th e 
upregulation of these factors occurs with a shorter time 
interv al following the introduction of HSV-1 tha n is 
required for intraretinal VEGF induction. Therefore, it is 
likely that VEGF is indirectly induced by one of these 
factors or an alternative cytokine whose regulation is 
altered by HSV-l infect ion. Following its upregulation, 
VEGF may augment the inflammatory response to the 
virus. 

VEGF can promote ocular neova sc ularization 
(Adamis et aI. , 1994; Aiello et aI., 1994; Miller et aI., 
1994; Pierce et aI. , 1995; Stone et aI., 1995; Murata et 
aI., 1996; Ozaki et aI., 1997), but in some cases, VEGF 
is upregulated without neovascularization occurring 
(Vinores et aI., 1997). One possible explanation for this 
is th e presence of an angiogenesis inhibitor. TGF13 
appears to serve this function in EAU, where it is 
upregulated concurrently with VEGF (Vinores e t aL, 
1998). TGF13 is similarly upregulated prior to VEGF in 
the retinas of HSV-1 injected eyes and their contralateral 
counterparts, thu s potentially preventing VEGF from 
exerting its angiogenic activity on the retinal 
vasculature. Th e an ti-angiogenic activity m ay be 
accomplished by a down-regulation of VEGF receptors, 
as ha s been repor ted for vascular endothelial cells 
(Mandriota et aI., 1996). 

IL-6 is a multifunctional cytokine that is associated 
with ocular infl am matory conditions. Muller cells 
respond rapidly to ocular inflammation or infection and 
studies us ing cultured retinal g lia and isolated retinas 
from HSV-l injected eyes showed that transcript levels 
of IL-6 are rapidly upregul ated and there is secretion of 
IL-6 from cultured Muller cells upon exposure to HSV-1 
or other inflamm a tory mediators (Drescher and 
Whittum-Hudson, 1996a,b). Immunohi stoc hemical 
s ta ining for IL-6 in the retinas of mice receiving 
intraocular HSV-1 injections showed the localization of 
IL-6 to Muller cells coincident with the marked 
upregulation of glial fibrillary acidic protein that occurs 

in the same cells during the first 3 days after intraocular 
inject ion of HSV-1 (Drescher and Whittum-Hudson , 
1996b). Since the earliest induction of IL-6 is observed 
in retinas that do not undergo necros is nor become 
highly inflamed, IL-6 is likely to be immunomodulatory 
or provide antiviral protection. IL-6 may downregulate 
IL-l13 and/or TNFa expression to mute the potentially 
destructive inflammation in ipsilaterally injected eyes. 
IL-6 expression in the retinas of HSV-1 injected eyes 
persists to at least 13 days post-injection and it becomes 
more widespread with the onset of retinal necrosis in the 
contralateral eye. The present study demonstrates that 
the intraocular injection of live virus into the anterior 
chamber is sufficient for the induction of VEGF, flk-1, 
TGF132, and IL-6 in the retina of the injected eye, as well 
as the contralateral, uninjected eye. 

The experimental model of herpesvirus retinopathy 
appea rs to s ha re relevant features with the human 
disease including anti-herpes antibodies (DeBoer et aI., 
1994) and acute retinal necrosis (Thompson et aI., 1994). 
Therefore, the information derived from the study of this 
experimental model , which provides the se tting of a 
transient inflammatory response in one eye and 
subseque nt v irus-mediated acute retinal necrosis in the 
opposite eye, should be applicable to human herpesvirus 
retinopathy a nd is likely to provide information 
regarding the interaction of cytokines and inflammatory 
mediators in the pathogenesis of the disease. Based on 
the results of this study, strategies that modulate the 
induction of VEGF, flk-l, TGF132, or IL-6 may have a 
beneficial effect on the course of herpesvirus retinopathy 
and acute retinal necrosis. 
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